$\displaystyle \sum_{i=a}^{b}{i \choose a}$ を求めてください。
        ・$1 \le a, b \le 10^{5}$
      
     
    
    $\displaystyle {a \choose b}$ は二項係数の意味で使っている。
    
    階乗の乗法逆元はたまに出る。
    $\displaystyle \frac{1}{i!} = \frac{1}{(i+1)!} \times (i+1)$ なので、
    $b!$ の乗法逆元を求めてから、小さい方に向かって順に計算すれば計算量を抑えられる。今回の制約ならやる必要ないけど。
    
    ちなみに、
    $\begin{matrix}
     &\displaystyle {a \choose             a}   &+&\displaystyle {a+1 \choose             a}   &+&\displaystyle {a+2 \choose             a}   &+& \displaystyle {a+3 \choose             a}   &+& \cdots &+&\displaystyle {b-1 \choose             a}       &+&\displaystyle {b \choose a} \\
    =&\displaystyle {a \choose {\color{blue}0}} &+&\displaystyle {a+1 \choose {\color{blue}1}} &+&\displaystyle {a+2 \choose {\color{blue}2}} &+& \displaystyle {a+3 \choose {\color{blue}3}} &+& \cdots &+&\displaystyle {b-1 \choose {\color{blue}b-a-1}} &+&\displaystyle {b \choose {\color{blue}b-a}} \\
    =& {\color{blue}1}                          &+& {\color{blue}a+1}                          &+&\displaystyle {a+2 \choose 2}               &+& \displaystyle {a+3 \choose 3}               &+& \cdots &+&\displaystyle {b-1 \choose b-a-1}               &+&\displaystyle {b \choose b-a} \\
    =&                                          &&  {\color{blue}a+2}                          &+&\displaystyle {a+2 \choose 2}               &+& \displaystyle {a+3 \choose 3}               &+& \cdots &+&\displaystyle {b-1 \choose b-a-1}               &+&\displaystyle {b \choose b-a} \\
    =&                                          && {\color{blue}\displaystyle {a+2 \choose 1}} &+&\displaystyle {a+2 \choose 2}               &+& \displaystyle {a+3 \choose 3}               &+& \cdots &+&\displaystyle {b-1 \choose b-a-1}               &+&\displaystyle {b \choose b-a} \\
    =&                                          &&                                             && {\color{blue}\displaystyle {a+3 \choose 2}} &+& \displaystyle {a+3 \choose 3}               &+& \cdots &+&\displaystyle {b-1 \choose b-a-1}               &+&\displaystyle {b \choose b-a} \\
    =&                                          &&                                             &&                                             &&  {\color{blue}\displaystyle {a+4 \choose 3}} &+& \cdots &+&\displaystyle {b-1 \choose b-a-1}               &+&\displaystyle {b \choose b-a} \\
    =&                                          &&                                             &&                                             &&                                              &&         &&                                                 && {\color{blue}\displaystyle {b+1 \choose b-a}} &= {\color{blue}\displaystyle {b+1 \choose a+1}}
    \end{matrix}$
    
    とできるので、それでもいい。
    
    
    
    
    
#!/usr/bin/env python3
# †
M = 1000000007
###
if __name__ == '__main__':
    a, b = map(int, input().split())
    fac = [None] * (b+1)
    fac[0] = 1
    for i in range(b):
        fac[i+1] = fac[i] * (i+1) % M
    inv = [None] * (b+1)
    inv[b] = pow(fac[b], M-2, M)
    for i in reversed(range(b)):
        inv[i] = inv[i+1] * (i+1) % M
    res = 0
    for i in range(a, b+1):
        res += fac[i] * inv[i-a] * inv[a] % M
        res %= M
    print(res)
    
    
    (ΦωΦ)<おしまい